
Althea
An incentivized mesh network protocol

Jehan Tremback, Justin Kilpatrick
{jehan,justin}@altheamesh.com

May 2017 v0.5

Abstract

As the number of connected individuals and devices expands, the “last mile”a con-
tinues to be the greatest challenge both in the connected and developing worlds,
representing a disproportionate portion of the cost and difficulty of connecting the
world.

Althea is meant to operate on the last mile, from a source of internet connectiv-
ityb to the end user, and creates a distributed ISP. The last mile is currently an
inefficient market and many areas only have one ISP [1]. Althea aims to replace
centralized ISPs with a competitive market of individuals and businesses providing
participating in one decentralized network.

Althea’s goal is for any person to be able to install a piece of equipment, participate
in the decentralized ISP, and receive payment for the service.

– Switching costs within the system are reduced, as nodes switch between con-
nectivity providers to find a route with the best combination of reliability,
bandwidth, and low cost.

– Advertising and marketing costs for the connectivity providers are eliminated,
as the only advertisements in this system are the automatic advertisements
of price and route quality between nodes. This makes things easy for new
entrants.

– Contract and billing costs are eliminated by payment channels. Payment
channels allow one to make micropayments with very low overhead.

a“Last mile” refers to the distance between an internet exchange and a user, often less
than 10 miles.

bsuch as an internet exchange or tier-1 or -2 network connection, or even a business
grade ISP connection.

1

Contents

1 Overview 2

1.1 Network overview . 3

1.2 Routing overview . 4

1.3 Payments overview . 5

1.4 Metering overview . 5

2 Routing 6

2.1 Route metric verification . 7

2.2 Verification scheduling . 9

2.3 Accuracy score . 10

2.4 Route metric adjustment . 10

2.5 Price metric . 11

3 Payments 12

3.1 Smart contract . 13

4 Metering 15

5 Network 16

5.1 Exit servers . 17

1 Overview

Althea allows routers to pay each other for bandwidth using cryptocurrency
payment channels. An important architectural detail is that nodes only pay
neighbors for forwarding packets. On top of this pay-for-forward network,
we build a system allowing consumers to pay for internet access. Althea is
intended to be used in local “mesh” [2] networks.

2

1.1 Network overview

There are a few different types of nodes that participate in Althea:

– User nodes are installed by people who want to buy internet access
on Althea. You can think of a user node as being similar to the router
and/or modem that is installed by a traditional ISP. The difference is
that it is independent of any one ISP.

User nodes may be paid by other nodes to forward packets, but without
specialized hardware and positioning the income is expected to be be
relatively small.

– Intermediary nodes are installed by people who want to earn money
by forwarding internet traffic (connectivity providers). These will typ-
ically be more powerful nodes and may be placed in advantageous
locations with good line of sight to other nodes.

– Gateway nodes are like intermediary nodes, but they are connected
to a source of cheap internet bandwidth such as an internet exchange,
an internet backbone connection, or even a business-grade connection
from a conventional ISP. They act as connection from Althea’s physical
layer to the outside internet. However, they are shielded from having
to take legal responsibility for traffic on the network by the exit nodes.

– Exit nodes are not necessarily part of the local physical network, but
can be hosted in a datacenter reachable over the internet. They are
connected to gateway nodes over VPN tunnels. Exit nodes provide an
endpoint to verify quality metrics propagated by nodes in the network.
This enables automatic selection of gateway nodes by the routing pro-
tocol. Exit nodes also take on the legal role of an ISP, performing
network address translation to route requests onto the public internet
and dealing with copyright complaints etc. This allows gateway nodes
to act as pure providers of bandwidth, without having to take on any
legal risk resulting from the use of their service.

Read more about the network architecture in section 5.

3

1.2 Routing overview

In section 2, we define a couple of extensions to the Babel routing protocol.
Babel was selected because it has several useful properties for our purpose.
However, any distance vector routing protocol could be modified to exhibit
the properties Althea requires. Distance vector protocols are already used
extensively on the internet. One well-known distance vector protocol is BGP
[5].

Routing in distance vector protocols is based on an advertised connection
quality metric. Nodes send an announcement packet stating their identity
and existence to the network once every predetermined period. These an-
nouncement packets are then passed from node to node. Each node updates
the metric to reflect the connection quality between it and the neighbor it
got the announcement from. Using this information, each node is able to
build up a routing table of the best neighbors to forward packets in order to
reach any destination on the network.

We propose two main additions to distance vector routing:

– A verifiable quality metric.

– A price metric.

A verifiable quality metric is a connection quality metric that can be veri-
fied by a node and the destination that it is sending packets to. Our first
extension to Babel allows nodes to verify the metrics advertised by their
neighbors.

To advertise prices a second metric is added to the routing advertisements,
this time containing a ‘price’ value for some arbitrary but agreed upon
amount of data transfer. When passing advertisements each node updates
the price field with their bid for passing data. Routes are then selected by
optimizing the quality metric vs the price metric and paying the selected the
full sum required to route all the way to the destination.

4

1.3 Payments overview

Each node on the network establishes payment channels with each of its
neighbors. A payment channel is a method for two parties to exchange
payments trustlessly by signing transactions that alter the balance of an
escrow account held by a bank or blockchain (we may use the Ethereum
blockchain for Althea) [7], [8], [9]. More detail about the functioning of our
payment channels can be found in section 3.

The important thing about a payment channel is that after the channel has
been opened, and funds have been placed in escrow, individual payments can
be made directly between the two parties without submitting anything to the
bank or blockchain. This means that the entire payment can be completed
in one packet. Most payment systems need to send another transmission to
a bank or blockchain, and wait for it to be confirmed.

Using payment channels, nodes can pay each other in very small increments
(on the order of cents or less). This allows them to pay their neighbors to
forward data without having to place a lot of trust in their neighbors. User
nodes also open a payment channel with an exit node of their choice. This
channel is used to pay the exit node for routing data onto the internet, as
well as paying for return traffic back to the node. Read more about exit
nodes in section 5.

1.4 Metering overview

Nodes keep track of data they have forwarded for their neighbors, and how
much they have been paid. If these two amounts do not match up, they must
having some way of cutting off access to the delinquent neighbor. Blocking
the neighbor’s MAC address could be one way to accomplish this, but MAC
addresses are easily changed and spoofed. Similarly, exit nodes must be able
to control traffic from user nodes.

In section 4, we cover the use of tunnels to allow neighbors to verify traffic
between one another, as well as allowing exit nodes to authenticate traffic
from user nodes.

5

2 Routing

Routing in Althea is based on the Babel routing protocol [6]. Babel is a
distance vector protocol which has proven to be robust and performant. All
distance vector protocols are based on a distributed form of the Bellman-
Ford pathfinding algorithm [3]. Nodes first perform some kind of link quality
test on the connections to their neighbors. This is known as the “link cost”.
They then share information about which destinations they can reach at
which quality (this starts out being only their immediate neighbors).

Whenever a node receives information about a destination1, it combines this
information with the link cost of the neighbor it received this information
from. This composite score is known as the “route metric”, and represents
the quality with which the destination can be reached across several hops.
The neighbor offering the best metric for a given destination is selected as
the next hop. All packets being sent to the destination will go through this
neighbor. Babel implements this selection by adding and remove routes from
the Linux kernel routing table.

From the Babel specification:

As many routing algorithms, Babel computes costs of links be-
tween any two neighbouring nodes, abstract values attached to
the edges between two nodes. [..]

Given a route between any two nodes, the metric of the route is
the sum of the costs of all the edges along the route. The goal of
the routing algorithm is to compute, for every source S, the tree
of the routes of lowest metric to S.

1We will use the word “destination” to refer to the destination of data packets. Babel
refers to this as “source”, because it is the source of routing packets.

6

2.1 Route metric verification

All current distance vector protocols, including Babel, have a major weak-
ness. All information about link cost and route metrics is provided on a
completely trusted and unverified basis. There is nothing stopping any node
from claiming that it has the best route to any destination. This is usu-
ally not a problem, since most networks today are owned by one entity. In
Althea, nodes are owned by many people and entities, all competing to pro-
vide the best service. Leaving this vulnerability unaddressed would allow
financially-motivated attacks, such as nodes claiming to have better routes
than they actually do in an effort to get more business.

Babel uses a sequence of “Hello” and “I heard you” (or “IHU”) messages to
estimate link quality between neighbors. Each node periodically broadcasts
a Hello message to all of its neighbors. Each Hello has a sequence number.
By looking at the sequence number of each Hello received and comparing
it to the last one, neighbors can determine whether they have missed Hello
messages from the node. Nodes keep an array of 16 bits for each neighbor
corresponding to the last 16 Hello messages, with a 1 representing a received
Hello and a 0 representing a missed Hello. From this array, a number called
the “rxcost” (short for receive cost) is calculated.

This rxcost is then sent back to the neighbor in an IHU message. The
neighbor then considers this number the “txcost” (short for transmit cost).
From these two numbers the overall link cost is calculated using the ETX
metric [4].

7

From the Babel specification:

A node uses a neighbour’s Hello history to compute an estimate,
written beta, of the probability that a Hello TLV is successfully
received. The rxcost is defined as 256/beta.

Let alpha be MIN(1, 256/txcost), an estimate of the probability
of successfully sending a Hello TLV. The cost is then computed by

cost = 256/(alpha * beta)

or, equivalently,

cost = (MAX(txcost, 256) * rxcost) / 256.

We propose a modification to the Babel protocol to allow for verification of
routes. Our modification involves nodes sending Hellos and IHU messages
back and forth to remote destinations. The same cost and metric calculations
are performed as with local neighbors. The metric calculated is expected to
be close to the overall metric advertised for the destination by the neighbor
currently forwarding packets to the destination. This gives us a way to
verify the accuracy of advertised routes. If the metric does not match the
metric advertised by the selected neighbor, the neighbor’s accuracy score is
affected (subsection 2.3), and the metric through this neighbor is adjusted
(subsection 2.4).

8

2.2 Verification scheduling

We have the ability to test and verify the routes advertised by neighbors,
but we need some way of deciding which routes to verify. Verification runs
on a timer. Each verification cycle a node follows this procedure to choose
a route r to verify:

D = { destinations used in the past x seconds }
d← randomSample(D)
R = { feasible routes to destination d }
r ← randomSample(R)

We start with the set of all destinations that have been used in the past x
seconds. x will be set at a reasonable constant, or it could be adjusted to
control verification focus. We select a destination d from this set at random.
We then get the set of all routes that are feasible and have a destination of
d. We select a route r from this set at random.

To test the route, we send the destination “Remote Hello” packets for some
amount of time. The Remote Hello packets are similar to Babel’s local
Hello packets, but they also carry information about which neighbor they
were sent through. Destinations periodically send “Remote IHU” packets to
those nodes they have recently received Remote Hello packets from. Similar
to Babel’s link cost calculation, the Remote Hello packets are used by the
destination to calculate a route cost, and the Remote IHU packets carry
this information back. Remote IHU packets also carry back the information
about which neighbor the Remote Hello was sent through.

9

2.3 Accuracy score

Once we receive a Remote IHU from a destination, we update the neighbor’s
accuracy score s with the following procedure:

d = destination that sent the IHU
n = neighbor shown by IHU message
c = verified route cost shown by IHU message
m = advertised route metric of n
A = { accuracy scores of n, indexed by destination }

a = min(m/c, 1)
Ad ← (Ad + a)/2
s = average(A)

if s < C1 then
n’s routes are removed from routing table

end if

A per-destination accuracy score a is calculated as the proportion of the
verified route cost c to the route metric m advertised by the neighbor n. It is
then averaged with the current accuracy score for that destinationAd, andAd
is set to the new value. We then take s, the average of all active destination
accuracy scores for the neighbor. If s drops below some adjustable value C1,
the neighbor’s routes are taken off of the kernel routing table.

2.4 Route metric adjustment

The above system is used to weed out chronically inaccurate neighbors, but
it also supplies us with a stream of correct route metrics. We can use these
metrics to improve our routing table even before a given inaccurate neighbor
is dropped. When we receive the route cost c above, we can start using
it instead of the neighbor’s advertised metric when selecting routes. We
continue using c for a duration D.

How long to make D? If D is too short, then nodes will go right back to
trusting an inaccurate metric that they recently had to correct. If D is too
long, then nodes will miss out on legitimate updates about newly improved
routes.

10

To strike the right balance, exponentially increasing time-out will be used
for bandwidth corrections beyond a small tolerance. A node that has partic-
ipated in a correction will record the time Tlast it last performed a correction
for a given route and the size of the correction δ. When participating in an-
other correction on the same route the duration D to apply the bandwidth
correction will be determined as:

D =
C1

Tnow − Tlast

δC2

Where C1 and C2 are constants to be adjusted and hardcoded. This formula
will make it take longer to go back to using a neighbor’s advertised metrics
if the advertised metrics needed to be corrected recently, and/or required a
large correction.

2.5 Price metric

We also need a way to propagate a price for each route, and take this price
into account when making forwarding decisions. Babel already includes a
mechanism for adding arbitrary “External Sources of Willingness”. This
works by having nodes add a number to the metric they have calculated
for a route. This doesn’t work for us for two reasons:

– First, the route metric in our system is verified. Modifying it arbitrarily
would break this verification.

– Second, the price must be distinct from the route metric, because it
will be used to determine payment amounts. For these reasons, we use
a separate price metric.

The requirements of this price metric are very simple, compared to other
parts of Althea. It consists of an additional 16 bit price field in each Babel
update TLV and in each route in a node’s routing table. This represents the
amount of Althea tokens that it costs to forward one kilobyte of data to a
destination.

As update packets are propagated through the network, each node increases
the route’s price by a certain amount. The simplest way to determine how
much to add to the route price is with a constant set by the node’s operator.
However, there could be many different types of automated price-setting
algorithms to adjust the price based on demand or competition.

11

Babel’s route selection procedure is extended to take this price field into ac-
count. Instead of selecting routes based purely on route metric, an extended
metric m′ is calculated with

m′ = m+ pn

Where m is the route metric, p is the price, and n is a constant multiplier.
Routes are then chosen based on m′. By adjusting n, nodes can determine
how much weight to give price in the calculation. A node with a lower value
for n will tend to prefer expensive but higher quality routes.

It would even be possible to populate multiple routing tables with routes
selected at different values of n, and propagate routes from these tables
under different router IDs. This or a similar mechanism could be used to
allow neighbors to choose from among a range of price-quality tradeoffs.

3 Payments

Nodes in Althea must be able to pay their neighbors to forward packets. It’s
advantageous for these payments to be made in very small increments. This
prevents nodes from having to trust their neighbors to provide service for a
longer amount of time. This allows nodes to securely get service from other
nodes that they don’t necessarily know or trust. Payment channel messages
can be very small, around 100 bytes. This allows payments to be made in
very small increments.

Even though payments are being made in very small increments, they are
still being made incrementally. This implies some small level of trust, and we
need to decide whether nodes will pay for forwarding service before receiving
and verifying access or after. If they pay before, it would be possible for a
malicious node to take the money and provide no service. If they pay after,
it would be possible for a malicious node to use the service and then not pay.

We’ve chosen for nodes to pay after receiving service. This is because if
nodes pay before, it would be possible for a malicious node to repeatedly
accept payment and not provide service (possibly switching identities each
time). They could save up their ill-gotten tokens and make money with this
strategy. On the other hand, if nodes pay after receiving service, malicious
nodes that repeatedly receive service and don’t pay will get nothing but a
bad connection.

12

3.1 Smart contract

Althea uses a Solidity contract for channels. This compiles to bytecode which
runs natively on the Ethereum blockchain [11], and many other blockchains
[10]. We will use ERC20 [12], or an equivalent token standard, but we won’t
get too deep into the rote details of implementing tokens in this paper.

Channels list The contract stores a list of Channels, indexed by pairs of
participant addresses (payment addresses, not IP addresses) and ChannelID.

Channels[address1 + address2 + ChannelID] = {
ChannelID: int16,
Balance1: int32,
Balance2: int32,
Open: boolean,
HoldPeriod: int16,
LastPaymentTx: PaymentTx,
LastPaymentTxTime: int16,

}

Channel funding When two nodes wish to open a channel, each one sends
a channel FundingTx to the contract. This transaction includes the payment
address of the other participant Counterparty, a ChannelID for the channel,
and a Fund amount of Althea tokens to fund the channel. The contract stores
the Althea tokens and adds an entry to the channels list for the participants.

FundingTx = {
ChannelID: int16,
Counterparty: address,
Fund: int32,

}

13

Channel payments When one of the nodes wishes to pay the other, it
sends a signed PaymentTx directly to the other node (not to the contract
on the blockchain). This transaction includes a sequence number and an
adjustment amount. The adjustment is an integer, that when added to the
channel’s Balance1 and subtracted from the channel’s Balance2, yields a
new set of balances representing the state of the channel after the payment.

PaymentTx = {
ID: int16,
SequenceNumber: int16,
Adjustment: int32,
Fast: boolean,
Signature1: [64]byte,
Signature2: [64]byte,

}

The PaymentTx is all that is required to make a payment. To withdraw funds
from the channel, a node adds its own signature to the PaymentTx and sends
it to the contract on the blockchain. The contract stores the PaymentTx with
the channel along with the time it was submitted.

After the hold period is over, the channel is closed, and the nodes can with-
draw their adjusted balances. If one of the nodes checks the blockchain before
the hold period is over and discovers that the other has tried to submit an
old PaymentTx, it can submit a newer PaymentTx (with a higher sequence
number). The newer transaction will then override the older one. If the Fast
boolean is set to true, the hold period is skipped.

Attacks There are a few attacks to be aware of, that nodes must take steps
to prevent. The first is a denial of service attack, where one node submits
an old PaymentTx and then prevents the other from accessing the blockchain
to submit a newer transaction. This can be mitigated in two ways:

– Increasing the hold period to increase the chance of the blockchain
getting the real latest PaymentTx. However, increasing the hold pe-
riod also allows one node to potentially tie up the other’s money for
longer (although in normal operation, the Fast boolean will be set
when both nodes agree to close the channel, and the channel will close
immediately).

– Send a “bounty hunter” periodic updates with the latest PaymentTx. In
the event of a node trying to cheat with an old PaymentTx, the bounty
hunter can override the old transaction, in return for a bounty.

14

Another attack is a replay attack on the PaymentTx. If a node ever opens
a new payment channel using an ChannelID that it has used on another
payment channel, the PaymentTxs from one channel could be used to close
the other. Nodes must make sure to never reuse a ChannelID.

4 Metering

We’ve set up a system where nodes are able to pay for traffic, but what hap-
pens if they don’t pay? There needs to be some control over which neighbors
receive internet access. It’s easy to spoof a MAC address, so we need some
kind of cryptographic authentication. One way to do cryptographic authen-
tication of packets on radio is WPA [13], but we need something that can be
done on wired links too. The best solution for now is to use an encrypted and
authenticated tunneling software like Wireguard [14]. A small optimization
would be to include authentication information in an IPv6 header exten-
sion, instead of encapsulation in tunnel packets with Wireguard. However,
Wireguard is already highly optimized, so this is an adequate solution for
now.

Wireguard

Physical
interface

Firewall

Bridge
interface

Userspace

Nodes create tunnels with each of their neighbors
and can allow, block, or shape traffic on each tun-
nel, depending on payment. Wireguard creates a
virtual interface for each tunnel. The virtual in-
terfaces created by the tunnels of all the neighbors
on one physical interface are bridged together into
another virtual interface for Babel to run on. This
preserves some per-interface optimizations made by
Babel.

If payment over a neighbor’s payment channel
stops, their packets are blocked by the firewall and
are no longer forwarded.

Metering from the exit node to the user node is accomplished in the same
way. There is also a Wireguard tunnel from the exit node to the user node
for other reasons, namely privacy and and as part of Lightweight 4over6 [15].
This tunnel provides a good control point for the exit node to cut service to
the user node in the case of non-payment.

15

5 Network

The base primitive that Althea is built on is a pay-for-forward network. If all
the mechanisms in the preceding sections work correctly, we have a network
where nodes can pay each other very granularly for the service of forwarding
data, and verify that the forwarding is happening correctly. This section
deals with using such a network to provide the one of the most popular
network services, internet access.

Tunnels over
the internet

Radio or
wired links

Gateway nodes

Intermediary
and/or home

nodes

Exit servers

For a network to provide internet access, there must be at least one node
that has a connection to the internet. Hopefully, there will be many. We
call such a node a gateway node. A gateway node connects to an exit node
over a tunnel. The tunnel creates a virtual interface which Babel is run on,
treating it like any other link. The gateway node/exit node topology [16] is
used by WLAN Slovenija [17], PeoplesOpen.net [18], and other community
mesh networks.

Per-hop tunnelPer-hop tunnel

Exit node tunnel
Data packets NAT

Intermediary
and/or gateway

node(s)

Exit nodeUser node

!Internet
destinations

16

Babel routes to destinations over tunnel connections just as well as it does
over real connections. This means that the nodes do not have to do any
kind of explicit gateway selection. Gateway nodes set a price and receive
payment for routes to the exit node just like any other route. User nodes are
connected to chosen exit nodes over encrypted tunnels, and receive internet
access over these tunnels. The only thing that gateway and intermediary
nodes see is encrypted traffic between user nodes and exit nodes.

5.1 Exit nodes

Exit nodes perform almost all the functions of an ISP, except for actually
carrying packets. This lets the other nodes in the network focus only on
connectivity, while exit nodes get paid for interfacing Althea to the rest of
the internet, and to the business and legal worlds. Exit nodes fuse Althea’s
pseudonymous, trustless, cyptocurrency powered physical layer with our cur-
rent internet and society. People who are good at providing connectivity can
focus on providing connectivity, while exit nodes deal with everything else.

Exit nodes:

Deal with public IP addresses Exit nodes have public IP addresses
and use them to route traffic for connected user nodes to and from the
internet. They either perform NAT for user nodes or provision them with
public IP addresses if the user nodes are performing NAT themselves (such
as in schemes like Lightweight 4over6 [15]).

Provide encrypted tunnels All traffic between user nodes and exit nodes
is encapsulated in a tunnel and encrypted. This means that users of a Althea
network only have to trust the exit node with their browsing history and
unencrypted traffic. Neighbors who are routing traffic for them will only see
encrypted packets going to an exit node.

Verify routes Our extensions to Babel allow nodes to verify routes be-
tween themselves and a destination. Exit nodes are the destination for a user
node’s outbound traffic, and the user nodes are destinations for the return
traffic. User nodes and exit nodes work together to keep the nodes on the
Althea network between them accurate. User nodes are implicitly trusting
exit nodes to perform route verification accurately.

17

Deal with legal considerations We want it to be as easy as possible for
someone to set up a gateway node. Part of this is relieving them of any legal
worries related to the use of their connection. Any legal complaints related
to the use of an Althea network can only be directed the exit nodes, as they
are the only ones routing traffic onto the internet and making it visible to
the world. Gateway and intermediary nodes only ever see encrypted packets.

Pay for return traffic User nodes pay their neighbors to forward traffic to
the exit node they are using and onto the internet, but someone needs to pay
for the traffic coming back. User nodes give exit nodes some money which
the exit nodes use to pay their neighbors for the return traffic. Payments
from the user node to the exit node can be made in Althea tokens, which
the exit node uses to pay its neighbors.

Alternately, payments to exit nodes could be made with traditional payment
systems such as credit cards. The exit node would then use this money
to buy Althea tokens, which it would use to pay for incoming traffic sent
to a particular user node. An exit node could also supply connected user
nodes with the Althea tokens necessary to pay for their outgoing traffic.
This could allow people to use Althea without having any understanding of
cryptocurrency.

References

[1] Internet Access Services: Status as of June 30, 2016
Industry Analysis and Technology Division Wireline Competition
Bureau
http://transition.fcc.gov/Daily_Releases/Daily_Business/
2017/db0503/DOC-344499A1.pdf
2017

[2] Wireless Community Networks: An Alternative Approach for Nomadic
Broadband Network Access
Pantelis A. Frangoudis and George C. Polyzos, Athens University of
Economics and Business Vasileios P. Kemerlis, Columbia University
https://www.cs.columbia.edu/~vpk/papers/wcn.commag11.pdf
2011

18

http://transition.fcc.gov/Daily_Releases/Daily_Business/2017/db0503/DOC-344499A1.pdf
http://transition.fcc.gov/Daily_Releases/Daily_Business/2017/db0503/DOC-344499A1.pdf
https://www.cs.columbia.edu/~vpk/papers/wcn.commag11.pdf

[3] Network Flow Theory
Ford, L. R.
1956

[4] A high-throughput path metric for multi-hop wireless networks
De Couto, D., Aguayo, D., Bicket, J., and R. Morris
2003

[5] A Border Gateway Protocol 4 (BGP-4)
Y. Rekhter, T. Li, S. Hares
https://tools.ietf.org/html/rfc4271
2006

[6] The Babel Routing Protocol
J. Chroboczek
https://tools.ietf.org/html/rfc6126
2011

[7] Micropayment Channel
Bitcoin Wiki Contributors
https://bitcoin.org/en/developer-guide#micropayment-channel
2014

[8] [ANNOUNCE] Micro-payment channels implementation now in bitcoinj
Mike Hearn
https://bitcointalk.org/index.php?topic=244656.0
2013

[9] Machinomy
https://machinomy.com
2017

[10] Ethermint
https://github.com/tendermint/ethermint
2016

[11] A Next-Generation Smart Contract and Decentralized Application Plat-
form
Vitalik Buterin
https://github.com/ethereum/wiki/wiki/White-Paper
2014

19

https://tools.ietf.org/html/rfc4271
https://tools.ietf.org/html/rfc6126
https://bitcoin.org/en/developer-guide#micropayment-channel
https://bitcointalk.org/index.php?topic=244656.0
https://machinomy.com
https://github.com/tendermint/ethermint
https://github.com/ethereum/wiki/wiki/White-Paper

[12] ERC: Token standard
frozeman
https://github.com/ethereum/EIPs/issues/20
2015

[13] IEEE 802.11i-2004: Amendment 6: Medium Access Control (MAC)
Security Enhancements
2004

[14] WireGuard: Next Generation Kernel Network Tunnel
Jason A. Donenfeld
https://www.wireguard.io/papers/wireguard.pdf
2016

[15] Lightweight 4over6: An Extension to the Dual-Stack Lite Architecture
Y. Cui, Q. Sun, M. Boucadair, T. Tsou, Y. Lee, I. Farrer
https://tools.ietf.org/html/rfc7596
2015

[16] Mesh/Network topology
https://sudoroom.org/wiki/Mesh/Network_topology
2015

[17] WLAN Slovenija
https://wlan-si.net

[18] PeoplesOpen.net
https://peoplesopen.net

20

https://github.com/ethereum/EIPs/issues/20
https://www.wireguard.io/papers/wireguard.pdf
https://tools.ietf.org/html/rfc7596
https://sudoroom.org/wiki/Mesh/Network_topology
https://wlan-si.net
https://peoplesopen.net

	Overview
	Network overview
	Routing overview
	Payments overview
	Metering overview

	Routing
	Route metric verification
	Verification scheduling
	Accuracy score
	Route metric adjustment
	Price metric

	Payments
	Smart contract

	Metering
	Network
	Exit servers

